

GHANNAM ALGHANNAM WWW.SEU1.ORG 1

IT 242 FOR Final Exam 2016-2017 by: Ghannam

Chapter 4&5

The Waterfall Model

The V-Model

Communicat ion

Planning

Modeling

Const ruct ion
Deployment

analysis

design
code

t est

project init iat ion

requirement gat hering estimating

scheduling

tracking

delivery

support

f eedback

GHANNAM ALGHANNAM WWW.SEU1.ORG 2

Evolutionary Models: Prototyping

Evolutionary Models: The Spiral

Communicat ion

Qu ick p lan

Const ruct ion

of

prot ot ype

Mo d e lin g

 Qu ick d e sig n

De live ry

& Fe e dback

Deployment

communication

Quick
plan

Modeling
Quick design

Construction
of prototype

Deployment
delivery &
feedback

GHANNAM ALGHANNAM WWW.SEU1.ORG 3

Evolutionary Models: Concurrent

communication

planning

modeling

construction
deployment

 delivery

 feedback

start

analysis

design

code

test

estimation

scheduling

risk analysis

Under review

Baselined

Done

Under

revision

Await ing

changes

Under

development

none

Modeling act ivit y

represents the state

of a software engineering

act ivity or task

GHANNAM ALGHANNAM WWW.SEU1.ORG 4

GHANNAM ALGHANNAM WWW.SEU1.ORG 5

Extreme Programming (XP): The most widely used agile process, originally proposed by Kent Beck

XP Rules:

 XP Planning

o Create user stories

o Assigns cost to each story

o Release planning creates the release schedule.

o A commitment is made on delivery date

o The project is divided into iterations.

 XP Designing

o Simplicity

o Use CRC cards

o Create spike solutions to reduce risk.

o Refactor whenever and wherever possible.

 XP Coding

o Code the unit test first.

o pair programming

 XP Testing

o All unit tests are executed daily

o Acceptance tests are run often and the score is published.

Chapter 11

 Passive state is simply the current status of all of an object’s attributes.

 Active state of an object indicates the current status of the object as it

undergoes a continuing transformation or processing.

 Content objects are extracted from use-cases

 Attributes of each content object are identified

 Relationships among content objects and/or the hierarchy of content

maintained by a WebApp

 Relationships—entity-relationship diagram or UML

 Hierarchy—data tree or UML

Interaction Model:

1. use-cases

2. sequence diagrams

3. state diagrams

4. a user interface prototype

GHANNAM ALGHANNAM WWW.SEU1.ORG 6

Chapter 12

Software Engineering Design:

1. Data/Class design: transforms analysis classes into implementation classes and data

structures

2. Architectural design: defines relationships among the major software structural

elements

3. Interface design: defines how software elements, hardware elements, and end-users

communicate

4. Component-level design: transforms structural elements into procedural descriptions of

software components

Fundamental Concepts:

 Abstraction: data, procedure, control

 Architecture: the overall structure of the software

 Patterns: “conveys the essence” of a proven design solution

 Separation of concerns: any complex problem can be more easily handled if it is

subdivided into pieces

 Modularity: compartmentalization of data and function

 Hiding: controlled interfaces

 Functional independence: single-minded function and low coupling

 Refinement: elaboration of detail for all abstractions

 Aspects: a mechanism for understanding how global requirements affect design

 Refactoring: a reorganization technique that simplifies the design

 OO design concepts
 Design Classes: provide design detail that will enable analysis classes to be implemented

Separation of Concerns: Any complex problem can be more easily handled if it is subdivided

into pieces that can each be solved and/or optimized independently, a problem takes less effort

and time to solve.

Concern is a feature or behavior that is specified as part of the requirements model

Modularity is the single attribute of software that allows a program to be intellectually

manageable

Functional Independence: achieved by developing modules with "single-minded" function and

an "aversion" to excessive interaction with other modules

Cohesion is an indication of the relative functional strength of a module

Coupling is an indication of the relative interdependence among modules.

GHANNAM ALGHANNAM WWW.SEU1.ORG 7

Design classes:

 Entity classes

 Boundary classes

 Controller classes

Inheritance: all responsibilities of a superclass is immediately inherited by all subclasses

Messages: stimulate some behavior to occur in the receiving object

Polymorphism: a characteristic that greatly reduces the effort required to extend the design

 Chapter 13

Why Architecture?
 analyze the effectiveness of the design

 consider architectural alternatives

 Reduce the risks

Architectural Styles
 a set of components

 a set of connectors

 constraints

 semantic models

Architectural parts:
 Data-centered architectures

 Data flow architectures

 Call and return architectures

 Object-oriented architectures

 Layered architectures

Archetype: is an abstraction (similar to a class) that represents one element of system behavior

Architectural description language (ADL): provides a semantics and syntax for describing a

software architecture. With the ability to:

 decompose architectural components

 compose individual components into larger architectural blocks

 Represent interfaces between components.

GHANNAM ALGHANNAM WWW.SEU1.ORG 8

Chapter 22:

Verification refers to the set of tasks that ensure that software correctly implements a specific

function. (Are we building the product right?)
Validation refers to a different set of tasks that ensure that the software that has been
built is traceable to customer requirements (Are we building the right product?)

General Testing Criteria:
 Interface integrity: internal and external module interfaces are tested as each module or

cluster is added to the software

 Functional validity: test to uncover functional defects in the software

 Information content: test for errors in local or global data structures

 Performance: verify specified performance bounds are tested

OO Testing Strategy:
 class testing is the equivalent of unit testing

o operations within the class are tested
o the state behavior of the class is examined

 integration applied three different strategies
o thread-based testing
o use-based testing
o cluster testing

MobileApp Testing:
 User experience testing
 Device compatibility testing
 Performance testing
 Connectivity testing
 Security testing
 Testing-in-the-wild
 Certification testing

High Order Testing:
 Validation testing
 System testing
 Alpha/Beta testing
 Recovery testing
 Security testing
 Stress testing
 Performance Testing

GHANNAM ALGHANNAM WWW.SEU1.ORG 9

Chapter 25

Testing Quality Dimensions:
 Content: is evaluated at both a syntactic and semantic level
 Function: is tested for correctness, instability, and general conformance to appropriate

implementation standards
 Structure: is assessed to ensure that it

o properly delivers WebApp content and function

o is extensible

o can be supported as new content or functionality is added

 Usability: is tested to ensure that each category of user

 Navigability: is tested to ensure that all navigation syntax and semantics are exercised to

uncover any navigation errors

 Performance: is tested under a variety of operating conditions, configurations, and

loading to ensure that

o the system is responsive to user interaction

o the system handles extreme loading without unacceptable operational degradation

 Compatibility: is tested by executing the WebApp in a variety of different host

configurations on both the client and server sides.

 Interoperability: is tested to ensure that the WebApp properly interfaces with other

applications and/or databases.

 Security: is tested by assessing potential vulnerabilities and attempting to exploit each.

WebApp Testing Strategy:
 The content model for the WebApp is reviewed to uncover errors.

 The interface model is reviewed to ensure that all use-cases can be accommodated.

 The design model for the WebApp is reviewed to uncover navigation errors.

 The user interface is tested to uncover errors in presentation and/or navigation mechanics.

 Selected functional components are unit tested.

Testing Interface Mechanisms:
 common gateway interface (CGI scripts)

 Streaming content

 Cookies (block of data sent by the server and stored by a browser as a consequence of a

specific user interaction)

 Application specific interface mechanisms (macro)

GHANNAM ALGHANNAM WWW.SEU1.ORG 10

Compatibility Testing:
 Compatibility testing: is to define a set of ―commonly encountered‖ client side

computing configurations and their variants

 Create a tree structure identifying

o each computing platform

o typical display devices

o the operating systems supported on the platform

o the browsers available

o likely Internet connection speeds

o Similar information.

 Derive a series of compatibility validation tests

Chapter 36

Maintainable Software:
The design and implementation of the software must “assist” the person who is making the

change

 Maintainable software exhibits effective modularity

 It makes use of design patterns that allow ease of understanding

 It has been created by software engineers who recognize that they may not be around

when changes must be made.

Software Supportability:
 The capability of supporting a software system over its whole product life

 The software should contain facilities to assist support personnel when a defect is

encountered in the operational environment

 Support personnel should have access to a database that contains records of all defects

that have already been encountered

Business Process Reengineering:
 Business definition

o cost reduction

o time reduction

o quality improvement

o Personnel development and empowerment.

 Process identification

 Process evaluation

 Process specification and design

 Prototyping

 Refinement and instantiation

GHANNAM ALGHANNAM WWW.SEU1.ORG 11

Business process reengineering (BPR Principles):
 Organize around outcomes, not tasks.

 Have those who use the output of the process perform the process.

 Link parallel activities instead of integrated their results.

 Put the decision point where the work is performed, and build control into the process.

 Capture data once, at its source.

Software Reengineering

Code Restructuring:
 Source code is analyzed using a restructuring tool.

 Poorly design code segments are redesigned

 Violations of structured programming constructs are noted and code is then restructured

 The resultant restructured code is reviewed and tested to ensure that no anomalies have

been introduced

 Internal code documentation is updated

GHANNAM ALGHANNAM WWW.SEU1.ORG 12

Chapter 37

Elements of a SPI Framework:

Maturity Models:
 Is applied within the context of an SPI framework.

 The intent of the maturity model is to provide an overall indication of the “process
maturity” exhibited by a software organization

The SPI Process:
 Installation/Migration

o Software process redesign (SPR): is concerned with identification,
application, and refinement of new ways to dramatically improve and
transform software processes.

o The existing (“as-is”) process.
o A transitional (“here-to-there”) process.
o The target (“to be”) process.

 Evaluation
o Assesses the degree to which changes have been instantiated and

adopted.
o The degree to which such changes result in better software quality or

other tangible process benefits.
o The overall status of the process and the organizational culture as SPI

activities proceed.

 From a qualitative point of view, past management and practitioner attitudes
about the software process can be compared to attitudes polled after installation
of process changes.

