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Chapter 4&5 
 

The Waterfall Model 

 

The V-Model 
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Evolutionary Models: Prototyping 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Evolutionary Models: The Spiral 
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Evolutionary Models: Concurrent 
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Extreme Programming (XP): The most widely used agile process, originally proposed by Kent Beck 

 

XP Rules: 

 XP Planning 

o Create user stories 

o Assigns cost to each story 

o Release planning creates the release schedule. 

o A commitment is made on delivery date 

o The project is divided into iterations. 

 XP Designing 

o Simplicity 

o Use CRC cards 

o Create spike solutions to reduce risk. 

o Refactor whenever and wherever possible. 

 XP Coding 

o Code the unit test first. 

o pair programming 

 XP Testing 

o All unit tests are executed daily 

o Acceptance tests are run often and the score is published. 

Chapter 11 

 Passive state is simply the current status of all of an object’s attributes. 

 Active state of an object indicates the current status of the object as it 

undergoes a continuing transformation or processing. 

 Content objects are extracted from use-cases 

 Attributes of each content object are identified 

 Relationships among content objects and/or the hierarchy of content 

maintained by a WebApp 

 Relationships—entity-relationship diagram or UML 

 Hierarchy—data tree or UML 

Interaction Model: 

1. use-cases 

2. sequence diagrams 

3. state diagrams   

4. a user interface prototype 
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Chapter 12 

Software Engineering Design: 

1. Data/Class design: transforms analysis classes into implementation classes and data 

structures 

2. Architectural design: defines relationships among the major software structural 

elements 

3. Interface design: defines how software elements, hardware elements, and end-users 

communicate 

4. Component-level design: transforms structural elements into procedural descriptions of 

software components 

Fundamental Concepts: 

 Abstraction: data, procedure, control  

 Architecture: the overall structure of the software  

 Patterns: “conveys the essence” of a proven design solution  

 Separation of concerns: any complex problem can be more easily handled if it is 

subdivided into pieces  

 Modularity: compartmentalization of data and function  

 Hiding: controlled interfaces  

 Functional independence: single-minded function and low coupling  

 Refinement: elaboration of detail for all abstractions  

 Aspects: a mechanism for understanding how global requirements affect design  

 Refactoring: a reorganization technique that simplifies the design  

 OO design concepts  
 Design Classes: provide design detail that will enable analysis classes to be implemented  

Separation of Concerns: Any complex problem can be more easily handled if it is subdivided 

into pieces that can each be solved and/or optimized independently, a problem takes less effort 

and time to solve. 

Concern is a feature or behavior that is specified as part of the requirements model 

Modularity is the single attribute of software that allows a program to be intellectually 

manageable 

Functional Independence: achieved by developing modules with "single-minded" function and 

an "aversion" to excessive interaction with other modules 

Cohesion is an indication of the relative functional strength of a module 

Coupling is an indication of the relative interdependence among modules. 
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Design classes: 

 Entity classes 

 Boundary classes 

 Controller classes 

 

Inheritance: all responsibilities of a superclass is immediately inherited by all subclasses 

Messages: stimulate some behavior to occur in the receiving object 

Polymorphism: a characteristic that greatly reduces the effort required to extend the design 

 
 Chapter 13 

 

Why Architecture? 
 analyze the effectiveness of the design  

 consider architectural alternatives  

 Reduce the risks 

 

Architectural Styles 
 a set of components  

 a set of connectors 

 constraints 

 semantic models 

 

Architectural parts: 
 Data-centered architectures  

 Data flow architectures  

 Call and return architectures  

 Object-oriented architectures  

 Layered architectures  

 

Archetype: is an abstraction (similar to a class) that represents one element of system behavior  

 
Architectural description language (ADL): provides a semantics and syntax for describing a 

software architecture. With the ability to: 

 decompose architectural components  

 compose individual components into larger architectural blocks 

 Represent interfaces between components.  
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Chapter 22: 
 
Verification refers to the set of tasks that ensure that software correctly implements a specific 

function. (Are we building the product right?) 
Validation refers to a different set of tasks that ensure that the software that has been 
built is traceable to customer requirements (Are we building the right product?) 
 

General Testing Criteria: 
 Interface integrity: internal and external module interfaces are tested as each module or 

cluster is added to the software 

 Functional validity: test to uncover functional defects in the software 

 Information content: test for errors in local or global data structures 

 Performance: verify specified performance bounds are tested  

 

OO Testing Strategy: 
 class testing is the equivalent of unit testing 

o operations within the class are tested 
o the state behavior of the class is examined 

 integration applied three different strategies 
o thread-based testing 
o use-based testing 
o cluster testing 

 

MobileApp Testing: 
 User experience testing 
 Device compatibility testing 
 Performance testing 
 Connectivity testing 
 Security testing 
 Testing-in-the-wild 
 Certification testing 

 

High Order Testing: 
 Validation testing 
 System testing 
 Alpha/Beta testing 
 Recovery testing 
 Security testing 
 Stress testing 
 Performance Testing 
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Chapter 25 

 

Testing Quality Dimensions: 
 Content: is evaluated at both a syntactic and semantic level 
 Function: is tested for correctness, instability, and general conformance to appropriate 

implementation standards 
 Structure: is assessed to ensure that it 

o properly delivers WebApp content and function 

o is extensible 

o can be supported as new content or functionality is added 

 Usability: is tested to ensure that each category of user 

 Navigability: is tested to ensure that all navigation syntax and semantics are exercised to 

uncover any navigation errors 

 Performance: is tested under a variety of operating conditions, configurations, and 

loading to ensure that 

o the system is responsive to user interaction 

o the system handles extreme loading without unacceptable operational degradation 

 Compatibility: is tested by executing the WebApp in a variety of different host 

configurations on both the client and server sides. 

 Interoperability: is tested to ensure that the WebApp properly interfaces with other 

applications and/or databases. 

 Security: is tested by assessing potential vulnerabilities and attempting to exploit each. 

 

WebApp Testing Strategy: 
 The content model for the WebApp is reviewed to uncover errors. 

 The interface model is reviewed to ensure that all use-cases can be accommodated. 

 The design model for the WebApp is reviewed to uncover navigation errors. 

 The user interface is tested to uncover errors in presentation and/or navigation mechanics. 

 Selected functional components are unit tested. 

 

Testing Interface Mechanisms: 
 common gateway interface (CGI scripts) 

 Streaming content 

 Cookies (block of data sent by the server and stored by a browser as a consequence of a 

specific user interaction) 

 Application specific interface mechanisms (macro) 
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Compatibility Testing: 
 Compatibility testing: is to define a set of ―commonly encountered‖ client side 

computing configurations and their variants 

 Create a tree structure identifying 

o each computing platform 

o typical display devices 

o the operating systems supported on the platform 

o the browsers available 

o likely Internet connection speeds 

o Similar information. 

 Derive a series of compatibility validation tests 

 

Chapter 36 
 

Maintainable Software: 
The design and implementation of the software must “assist” the person who is making the 

change 

 Maintainable software exhibits effective modularity 

 It makes use of design patterns that allow ease of understanding 

 It has been created by software engineers who recognize that they may not be around 

when changes must be made. 

 

Software Supportability: 
 The capability of supporting a software system over its whole product life 

 The software should contain facilities to assist support personnel when a defect is 

encountered in the operational environment 

 Support personnel should have access to a database that contains records of all defects 

that have already been encountered 

 

Business Process Reengineering: 
 Business definition 

o cost reduction 

o time reduction 

o quality improvement 

o Personnel development and empowerment.  

 Process identification 

 Process evaluation 

 Process specification and design 

 Prototyping 

 Refinement and instantiation 
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Business process reengineering (BPR Principles): 
 Organize around outcomes, not tasks.  

 Have those who use the output of the process perform the process. 

 Link parallel activities instead of integrated their results. 

 Put the decision point where the work is performed, and build control into the process. 

 Capture data once, at its source. 

 

Software Reengineering 

 

 
 

 

Code Restructuring: 
 Source code is analyzed using a restructuring tool. 

 Poorly design code segments are redesigned 

 Violations of structured programming constructs are noted and code is then restructured 

 The resultant restructured code is reviewed and tested to ensure that no anomalies have 

been introduced 

 Internal code documentation is updated 

 

 

  



  

GHANNAM ALGHANNAM                             WWW.SEU1.ORG 12 

 

Chapter 37 
 

Elements of a SPI Framework: 
 

 
 

Maturity Models: 
 Is applied within the context of an SPI framework. 

 The intent of the maturity model is to provide an overall indication of the “process 
maturity” exhibited by a software organization 

 

The SPI Process: 
 Installation/Migration 

o Software process redesign (SPR): is concerned with identification, 
application, and refinement of new ways to dramatically improve and 
transform software processes. 

o The existing (“as-is”) process. 
o A transitional (“here-to-there”) process. 
o The target (“to be”) process. 

 Evaluation 
o Assesses the degree to which changes have been instantiated and 

adopted. 
o The degree to which such changes result in better software quality or 

other tangible process benefits. 
o The overall status of the process and the organizational culture as SPI 

activities proceed. 

 From a qualitative point of view, past management and practitioner attitudes 
about the software process can be compared to attitudes polled after installation 
of process changes. 

 


